La dualité en programmation linéaire.

Rémi Lajugie

On se place dans \mathbb{R}^n .

Définition 1 Soit A une matrice de taille $m \times n$, $b, c \in \mathbb{R}^n$, $c \neq 0$. On appelle programme linéaire sous forme standard le problème d'optimisation suivant :

$$\inf. \quad c^{\mathsf{T}}x$$
 (1)

$$s.c \quad Ax = b \tag{2}$$

$$x \ge 0. (3)$$

On le note (P_s) .

Définition 2 Soit A une matrice de taille $m \times n$, $b, c \in \mathbb{R}^n$, $c \neq 0$. On appelle programme linéaire sous inégalités le problème d'optimisation suivant :

$$\inf. \quad c^{\mathsf{T}}x$$
 (4)

$$s.c \quad Ax \le b. \tag{5}$$

(6)

On le note (P_i) .

Définition 3 On dit qu'un problème d'optimisation est faisable s'il existe un élément x satisfaisant les contraintes.

Définition 4 Un problème d'optimisation faisable est dit réalisable si l'infimum du problème est fini.

Proposition 1 Si un problème d'optimisation linéaire est réalisable de valeur optimale p^* alors il existe x^* tel que $c^{\top}x^* = p^*$.

Preuve de la proposition :

Sans perte de généralité, on peut supposer que 0 est dans l'ensemble de contraintes (quitte à changer de variable). Comme le problème est réalisable, il existe une suite minimisante $(x_i)_{i\in\mathbb{N}}$.

Cas 1 : cette suite est bornée, donc, comme l'ensemble des contraintes est fermé, à valeur dans un compact. Quitte à extraire, on peut supposer que cette suite converge, et la limite vérifie bien $c^T x = p^*$.

Cas 2 : la suite n'est pas bornée. Comme l'ensemble des contraintes C est un convexe contenant 0, il est étoilé par rapport à 0. Donc la suite des $y_i = \frac{x_i}{\|x_i\|}$ est une suite bornée à valeur dans C qui est fermée. Quitte à extraire, on suppose que la suite des y_i converge vers y et on note $l = c^T y$. On a alors $\|y_i\|c^T y_i$ qui est équivalente à $\|y_i\|l$. Comme le problème est réalisable on a forcément l = 0. Ainsi $x^* = 0$ est optimal.

Définition 5 Soit $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m' \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^m$. On appelle fonction duale de Lagrange associée au problème $\inf_{x,Ax \leq b,Bx=c} f(x)$ la fonction à valeurs dans $\overline{\mathbb{R}}$ suivante : $g(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} f(x) + \lambda^{\top}(Ax - b) + \mu^{\top}(Bx - c)$.

On appelle problème d'optimisation dual, le problème :

$$\sup g(\lambda, \mu) \tag{7}$$

$$s.c \quad \lambda \ge 0.$$
 (8)

Exemple : La fonction duale de Lagrange du problème P_i vaut $b^{\top}\lambda$ si $A^{\top}\lambda = -c$ et $-\infty$ sinon. On appelle problème dual le problème d'optimisation

$$\sup b^{\top} \lambda \tag{9}$$

$$s.c \quad A^{\top} \lambda = -c, \tag{10}$$

$$\lambda \ge 0. \tag{11}$$

Proposition 2 Dualité faible. On a toujours $\sup_{\lambda>0} g(\lambda,\mu) \leq \inf_{x,Ax \leq b,Bx=c} f(x)$.

Théorème 1 Si le problème P_i est réalisable de valeur optimale p^* , alors on a dualité forte, c'est à dire que $\exists z \in \mathbb{R}^m$ tel que la fonction duale de Lagrange $g(z) = p^*$.

Preuve

Soit x^* un point satisfaisant les contraintes qui soit optimal.

On pose alors $I = \{i \in 1, ..., m(Ax^*)_i = b_i\}$ l'ensemble des contraintes saturées. Si cet ensemble est vide alors il existe un voisinage ouvert de x^* qui satisfait les contraintes mais alors c^Tx^* est nul dans toutes les directions (vu x^* optimal, une direction de valeur non nulle donnerait une direction de montée) donc on serait dans le cas c = 0 que nous excluons.

On note a_i la ième ligne de A. On pose $B=x, \exists z\geq 0, \sum_{i\in I}z_ia_i=x.$

Nous admettons que c'est un cône convexe fermé (c'est la fermeture qui n'est pas évidente mais qui peut se faire par une sorte de récurrence). Etape 1 : on montre que $-c \in B$

Supposons que ce ne soit pas le cas, on peut alors trouver un hyperplan séparateur strict entre -c et B donc il existe α , β tels que $-c^T\alpha + \beta < 0$ et $\forall z \in B, z^T\alpha + \beta > 0$. Comme $0 \in B$, $\beta > 0$ Fixons $z \in B$, comme B est un cône, on a en fait $\forall \lambda > 0, z^T\alpha > \beta/lambda$ donc $z^T\alpha > 0$ en passant à la limite.

Comme $\beta > 0$, il vient que $c^T \alpha > 0$. Ainsi on peut considérer $x_{\epsilon} = x^* - \epsilon \alpha$. Pour $i \in I$, on remarque que $(Ax_{\epsilon})_i \leq b_i$ et si $i \in I$, la contrainte n'était pas saturée, donc pour $\epsilon < \min_{i \notin I} (b_i - Ax^*)$ on a que la contrainte n'est pas saturée. On en déduit alors que x^* ne serait pas optimal. ce qui est contradictoire. Donc $-c \in B, -c = A^T \lambda$ avec $\lambda \geq 0$ et $\lambda_i = 0 \forall i \notin I$.

Etape 2 : vérifins que λ convient

par définition de la saturation il vient que $\lambda^T b = c^T x^*$ et on voit que λ est faisable.

Références

- Boyd.
- Ciarlet.
- In your head.